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1 Introduction

The basic operation of photo-multiplier tubes is explained in many excellent references [1]. The
technology and applications are also explained in user guides from the manufacturers [2]. If
illuminated by a small number of photons of the appropriate wavelength, the photo-multiplier
cathode will emit a number electrons depending on the quantum efficiency of the photo-cathode.
Each of these photo-electrons will go through a multiplication or amplification process through a set
of dynodes with total gain that can range from ∼ 106 → 107. The gain is achieved due to the kinetic
energy imparted to the electrons from the high voltage between the cathode and the first dynode,
and between each pair of subsequent dynodes. The usual gain at each dynode ranges ∼ 2 → 10
depending on the technology and the applied high voltage. The gain is assumed to be independent
for each photo-electron. Gain linearity and independence are very general assumptions and are
the normal operating conditions in most applications including the some of the largest installations
of photo-multiplier tubes for underground neutrino detectors [3, 4]. The total charge is obtain by
the multiplication of gains from each stage. For a given average number of incident photons the
distribution of the produced charge depends on the statistics of produced photo-electrons as well as
the gain, and the addition of noise from various sources. This has been previously considered in the
literature [5] and used for fitting and extraction of basic detector constants from data. We will use
some of the conventions from [5]. However, in this report, we will not consider the technological
aspects of the construction of the photo-multiplier tube, but analyze the statistical properties of
the distributions of the total charge produced. We show that under very general conditions the
properties can be described with few simplifying assumptions about the performance of the system.
In particular, we provide a new general formalism with broad applicability; it can be used for a
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variety of detectors as well as statistical models for the gain including Poisson fluctuations in the
number of secondary electrons from the first dynode. A formula for Poisson gain model is included
in the paper. Our formula allows analysis without the assumption of low charge for background
processes as assumed in [5]. Lastly, we will analyze the limiting forms of this formula under various
conditions commonly in practice. We also point out that the formalism naturally allows a clear
understanding of the probability density at or around zero charge which can occur due to the sum
of fluctuations in charges from backgrounds and signal.

Although ultimately unnecessary, it may be useful to follow the calculation with a set of
assumptions that aid visualization of a typical measurement. The photo-multiplier could be assumed
to be subject to a pulsed light source with a low average intensity of photons. The gain of the photo-
multiplier is assumed to be constant and independent for each photo-electron, and the anode where
the total charge is collected is considered to be DC coupled to an integrator and/or a waveform
digitizer. The total charge and any noise from the tube and electronics is collected in a fixed time
interval provided by the expected arrival time of the photon pulse. We should remark that in case
of AC coupling, the same considerations remain valid with some modifications to allow for partial
collection of the charge, but we will not consider this possibility in detail.

2 Derivation

The collected charge has three components: the charge from the signal and its multiplication (or
amplification), the random noise from the electronics chain, and the noise from PMT itself in terms
of random pulses from the cathode and dynode chain called dark noise. We will build a model for
the PMT starting with the background current it produces in the absence of any signal.

2.0.1 Background Charge

The total background is a random number, B = Q+D. Here the random number Q is the charge due
to a fluctuating baseline current without contribution from any electron emission from the PMT.We
are assuming that the current is integrated over some fixed time interval around the expected arrival
of the signal. The random number D is the charge due discrete processes such as thermo-emission
from the PMT structures. It is obvious that Q will be normally distributed with some mean, q0, and
standard deviation,σ0. These parameters depend on the length of the integration time, but also on the
readout electronics such as the input impedances of the pre-amplifiers and digitizers, the background
pickup noise, and the bandwidth of the system. The background component corresponding to dark
pulses, D, should look like single electron emission from the photo-cathode, but that is almost
never the case in most practical devices; D is best described by an exponential probability density
function with an exponential parameter, c0. The probability distribution functions (PDF) for Q and
D are given by:

PQ (x) =
1

√
2πσ0

e
−(x−q0 )2

2σ2
0 , (2.1)

PD (x) = (1 − w)δ(x) + wθ(x)c0e−c0x . (2.2)

Here w is the probability of a dark pulse, θ(x) is the step function, and δ(x) is the delta function.
The total background is a convolution of these two probability densities. The convolution is best
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calculated by using the characteristic functions for the above PDFs which are given as:

φQ (s) = eisq0 e−
1
2σ

2
0 s

2
, (2.3)

φD (s) = (1 − w) + w
1

1 − is/c0
. (2.4)

As a quick reminder, a characteristic function (CF) is the Fourier transform of a probability density
function for continuous random variables or a probability mass function (PMF) for discrete random
variables. A review can be found from many resources [6]. The background PDF can readily be
calculated by using the total background characteristic function:

φB (s) = φQ (s) × φD (s). (2.5)

It is easy to see that the total background naturally has two components. The first term or the
pedestal centered at q0 has a normal PDF, and it is superimposed on the second term, a somewhat
smoothed exponentially falling dark rate spectrum. The characteristic function for the smoothed
dark rate spectrum is given by:

φEMG (s) =
eisq0 e−

1
2σ

2
0 s

2

1 − is/c0
(2.6)

This is recognized as the characteristic function for the exponentially modified Gaussian PDF
(EMG). The PDF that corresponds to the EMG is given below.

PEMG (x) =
c0
2

e
c2

0σ
2
0

2 e−c0 (x−q0)

×erfc
[

1
√

2

(
c0σ0 −

x − q0
σ0

)]
(2.7)

erfc(x) is the complementary error function defined as erfc(x) = 1 − erf(x). Some care is needed
when evaluating this form of the PDF when the exponential parameter is too small or too large, but
there are alternative forms that allow the evaluation. We will not dwell on these details here. In
the following we will use definitions for the normal and the EMG PDFs as follows. N (x; µ, σ) is
defined to be the normal PDFwith mean of µ and standard deviation ofσ. EN (x; µ, σ, c0) is defined
as the exponentially modified Gaussian PDF with c0 as the additional exponential parameter. In the
following we show that with these two PDFs, we can provide a detailed model for the charge from
a photo-multiplier. In figure 1 we show examples of the function EN (x; µ, σ, c0). It is easily seen
that when σ is small the erfc function approaches a step function and the overall PDF approaches
an exponential. A simple exercise will show that the mean of the exponentially modified Gaussian
is µ + 1/c0 and the variance is σ2 + 1/c2

0 , with parameters as defined in this paragraph. The mean
is obviously shifted by the presence of the exponential, and the variance becomes larger because of
the tail introduced by the exponential.

2.0.2 Signal Charge

We now turn our attention to the probability density function of the signal charge. If λ is the mean
number of photo-electrons produced at the photo-cathode then the discrete randomvariable K photo-
electrons has the probability mass function given by the Poisson formula; PK (k) = e−λλk/k!. This
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Figure 1. Examples of the exponentially modified Gaussian (EMG) probability density function,
EN (x; µ, σ, c0). The values of parameters are set to be µ = 0, c0 = 1/30, and σ = 1, 5, 10 for the
blue, green and red curves, respectively.

Poisson probability distribution is well known to come from a convolution of Poisson and binomial
processes when PMTs are used to sample low intensity sources. Each of the produced photo-
electrons will go through the multiplication stage. The fluctuations of the gain or multiplication,
L, are dominated by the gain at the first stage due to secondary emission of electrons. The mean
first stage gain could range from zero to a few electrons depending on the applied voltage; this
gain is also Poisson distributed because only a small fraction of the electrons excited in the dynode
escape and are collected to contribute to the gain [7]. If the mean gain at the first stage is α then
the first stage gain is given by a Poisson random variable : PL (l) = e−ααl/l!. The total charge
from the signal process is the random variable Z =

∑K
i=1 Li, where Li are independent random

numbers corresponding to the gain for each of the K photo-electrons. The total charge, Z , is
recognized to be distributed according to the compound-Poisson[8, 9] probability function with a
jump distribution that is also Poisson. A jump distribution is defined as the distribution that governs
the statistics of the gain or L in a compound Poisson probability distribution. In the case of a Poisson
jump distribution, the charge Z is a non-negative integer and the compound-Poisson is a discrete
probability mass function. In most ordinary circumstances, α is reasonably large, and the gain can
be characterized as normally distributed with a mean µ and standard deviation σ. We have found
that for values of α > 2, the error made by assuming a Gaussian gain (with µ = α and σ =

√
α) is

< 5%, adequate for most work[10]. Usually photo-multipliers run with first stage gain of > 4, and
therefore the assumption of Gaussian gain is quite sensible. For the purposes of this paper, we will
provide new formulas for both Poisson and Gaussian gain models. It is again easiest to start with
the characteristic functions for the compound-Poisson probability functions. For a Poisson jump
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distribution, the characteristic function for Z , the signal charge is given as:

φZ (s) = Exp
(
λ(eα(eis−1) − 1)

)
=

∞∑
k=0

ekα(eis−1) ×
e−λλk

k!
(2.8)

And the discrete probability mass function is given by

PZ (n) =



e−λ +
∑∞

k=1 e−kα e−λλk

k! . . . (n = 0)∑∞
k=1

e−kα (kα)n
n!

e−λλk

k! . . . (n > 0)

For a Gaussian jump distribution, we also provide the characteristic function and the probability
density function for Z , however it should be remarked that in this case the probability density function
is for a charge that is a continuous variable, and it can take negative values. The characteristic
function for compound Poisson with Gaussian jump is given by:

φZ (s) = Exp
(
λ(eisµ−s

2σ2/2 − 1)
)
=

∞∑
k=0

eiskµe
−s2σ2k

2
e−λλk

k!
(2.9)

The corresponding probability density function is obtained by noticing that each of the s-dependent
terms above corresponds to a Gaussian PDF, except at k = 0. The k = 0 term obviously can
only contribute to no charge, and so we have to separate the probability density at zero. When we
consider the total charge including the background this issue will disappear, but for completeness
we provide the PDF for the signal only:

PZ (x) =




e−λ +
∑∞

k=1
e−λλk

k! × e−kµ
2/2σ2

√
2πkσ2 . . . for (x = 0)

∑∞
k=1

e−λλk

k! × e
−

(x−kµ)2

2kσ2
√

2πkσ2 . . . for (x > 0)

(2.10)

Before ending this section, it is useful to consider the mean and the variance of the above signal
charge distributions. These can be readily calculated by differentiating the characteristic function,
φZ at s = 0, and multiplying with appropriate factors of i. Obviously, in the case of Poisson gain
distribution with a parameter of α, the mean signal will be λα, and its variance will be λα(α + 1).
For normally distributed gain with a mean gain of µ and standard deviation of σ, the mean for
the signal will be λµ and the variance λ(σ2 + µ2). These results can be found in textbooks on
probability and statistics [8].

2.0.3 Total Charge

Now we must combine the signal and background charges to obtain the probability density function
for the total charge. We define the random variable, Y = Z + B, for the charge collected at the anode
of the PMT. The probability density function forY will be a convolution of the densities for Z and B.
For the calculation in this section we will assume that the gain per photo-electron is best described
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by a Gaussian PDF. In most ordinary circumstances this will be the case; the corresponding formula
for a Poisson distributed gain will be covered in the appendix. The characteristic function for the
total charge Y with the assumption of the normal PDF for the gain is given by simply multiplying
the functions from equations 2.5 and 2.9.

φY (s) = φZ (s) × φD (s) × φQ (s)

=



∞∑
k=0

eiskµe
−s2σ2k

2
e−λλk

k!


×

(
(1 − w) + w

1
1 − is/c0

)
× eisq0 e−

1
2σ

2
0 s

2

=



∞∑
k=0

eis(kµ+q0)e
−s2 (σ2k+σ2

0 )
2

e−λλk

k!


×

(
(1 − w) + w

1
1 − is/c0

)
(2.11)

Upon inspection we see that the terms multiplying (1 − w) will have a normal PDF and the terms
multiplying w/(1 − is/c0) will have the exponentially modified Gaussian PDF. For convenience
we provide the full PDF separated for no photo-electron, k = 0, single photo-electron, k = 1, and
multiple photo-electrons. We use the previous definitions for the normal and the EMG PDFs from
section 2.0.1. Also recall that the form below is now valid for the entire domain of the real random
variable Y from negative to positive values.

PY (x) = e−λ ×
(
(1 − w)N (x; q0, σ0) + wEN (x; q0, σ0, c0)

)
+ λe−λ ×

(
(1 − w)N (x; µ + q0,

√
σ2 + σ2

0) + wEN (x; µ + q0,
√
σ2 + σ2

0, c0)
)

+

∞∑
k=2

λke−λ

k!
×(

(1 − w)N (x; kµ + q0,
√

kσ2 + σ2
0) + wEN (x; kµ + q0,

√
kσ2 + σ2

0, c0)
)

(2.12)

3 Limiting Forms

We first examine the spectra resulting from equation 2.12 in figures 2, and 3. Figure 2 shows the
effect of the baseline fluctuations. As the baseline fluctuation grows, the pedestal will become
wider, however the effect on the main part of the spectrum remains small as long as σ0 � σ. The
effect of dark pulses on the spectrum is small, even with w = 0.3 as long as c0 remains large.

If the baseline fluctuation is small so that c0σ0 � 1 then the first line in equation 2.12 becomes
a simple sum of a pedestal and an exponential background [5]:

PB (x) ≈ (1 − w)N (x; q0, σ0) + wθ(x)c0e−c0 (x−q0) .

(3.1)

For a large c0 the dark rate has small pulse heights, and therefore the effect on the main part of the
spectrum is small but also for very small c0 the dark rate does not affect the shape of the main part of
the spectrum because the dark pulses become spread out over a large range of charge, diminishing
their contribution. Of course, one expects the dark pulses to contribute pulse heights that are
in the same range as the single photo-electron charge, c0 ∼ 1/µ, where they have the maximum
detrimental effect on the measurement. This can be seen in figure 2. If the dark rate characteristics
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Figure 2. Examples for the calculation of a PMT spectrum. The probability of dark pulses, w = 0.3. The
values of parameters are set to λ = 3 (mean number of photo-electrons), q0 = 1 (baseline shift), µ = 5 (mean
gain), σ = 2 (standard deviation of the gain), c0 = 10 (dark rate parameter), and σ0 = 0.2 for the blue curve.
For the red dashed curve we change the baseline fluctuation to σ0 = 0.5. And for the black dotted curve we
change the dark rate parameter c0 = 1/µ = 1/5 to show its detrimental effect. Background processes do not
simply add to the spectrum, but they change the spectra due to the convolutions with signal processes.

are such that it can be neglected from the signal part of the spectrum, then the spectrum can be
simplified to have separate contributions from pedestal, dark rate, and signal. However this can be
an over-simplification in many circumstances. Here we also make the assumption that the baseline
fluctuations are small compared to the gain fluctuations, σ0 � σ, but the baseline shift (q0) is
retained in the equation:

PY (x) ≈ e−λ ×
(
(1 − w)N (x; q0, σ0) + wθ(x)c0e−c0 (x−q0)

)
+

∞∑
k=1

λke−λ

k!
× N (x; kµ + q0,

√
kσ2). (3.2)

In figure 3 we show a comparison between spectra with differing values of the gain (µ ) and the
gain fluctuation (σ). It is clear that for low light levels, the mean number of photo-electrons can be
obtained from the distinctive shape of the spectrum. Ideally, if the baseline fluctuation is small, the
total probability content around the pedestal can be measured to obtain (1 − w)e−λ. For small dark
current, this will provide a simple estimate of the mean number of photo-electrons. A subsequent
fit to the spectrum can be made to fit λ, µ, and σ.

When the gain fluctuations are small compared to the fluctuations in the number of photo-
electrons, σ/µ � 1/

√
λ, the signal probability density becomes a sum of narrow Gaussian peaks

separated by the mean value of the gain, µ. In such a case, the mean photo-electron count, as well as
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Figure 3. Examples for the calculation of PMT spectra and its dependence on the gain parameters. The
probability of dark pulses, w = 0.3. The values of parameters are set to be λ = 3 (mean photo-electrons),
q0 = 1 (baseline shift), σ0 = 0.2 (baseline fluctuation), c0 = 10 (dark rate parameter), µ = 5 (mean gain),
σ = 2 (gain fluctuation) for the blue curve. For the red dashed curve we change the mean gain µ = 6 which
clearly shows as a shift in the spectra. For the black dashed curve we additionally change the gain fluctuation
parameter σ = 3.

the gain can be measured from the spectrum with little difficulty. However, if the gain fluctuations
are comparable to the fluctuations due to the number of photo-electrons, the two are difficult to
separate from each other. When λ, the average number of photo-electrons becomes large and the
gain fluctuations are comparable to 1/

√
λ, the signal probability density (compound Poisson) can

be approximated as Gaussian (figure 4). This is sometimes erroneously described as a convolution
of Poisson and Gaussian distributions. The form of the approximate signal Gaussian when the gain
fluctuations are comparable to 1/

√
λ is as follows:

PZ (x) ≈ N (x; λµ,
√
λ(σ2 + µ2)) (3.3)

In this case, it is likely safe to neglect the background due to baseline fluctuations; the spectrum
after combining with the background becomes:

PY (x) ≈ (1 − w)N (x; λµ + q0,

√
λ(σ2 + µ2)) + wEN (x; λµ + q0,

√
λ(σ2 + µ2), c0) (3.4)

Here we retain the baseline shift, but ignore the contribution from the baseline fluctuation. The
overall mean of the spectrum, (λµ + q0 + w/c0), will appear further shifted if the dark pulse
contribution is sizable.
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Figure 4. Examples of PMT spectra with differing gain fluctuations. The probability of dark pulses is
set to zero, w = 0. The values of other parameters are set to be λ = 5 (mean photo-electrons), q0 = 1
(baseline shift), σ0 = 0.2 (baseline fluctuation), µ = 5 (mean gain), σ = 0.5, 1, 2 (gain fluctuation) for the
magenta-dashed, green-dashed, and blue-solid curves, respectively.

4 Discussion

The formula derived in equation 2.12 can be used for fitting and extracting calibration constants for
photo-multipliers in various circumstances. A thorough analysis of fitting with data is beyond the
scope of this paper which is focused on the derivation and analysis of the underlying distributions,
nevertheless we have provided an example of data and a fit using 2.12 in figure 5. The data was
obtained by flashing a low intensity light pulse on a Hamamatsu R5912 photomultiplier and read
out using a Series-6 Tektronics oscilloscope using an external trigger. We now provide a partial list
of considerations when using the formula and the methods described above:

• For purposes of gain calibration and equalization of gains, it is common to have a light pulser
system for PMTs. The best way to use this is to pulse with low intensity (few photo-electrons)
with pulse widths that are smaller than the fastest time constant for the PMT (see figure 5).
It is not necessary to have the same intensity for all channels. The formula provided above
shows that for low intensity, the gain and the number of photo-electrons can be disentangled
very well. The example shown in figure 5 demonstrates that equation 2.12 describes the entire
spectrum including the pedestal in detail. The inclusion of the pedestal in the fit is very useful
to assure normalization of the spectrum, and extract the mean number of photo-electrons, the
baseline, and the electronic noise that contributes to the baseline fluctuations.

• It is important to distinguish between data acquired by utilizing a trigger on the channel that
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Figure 5. Example fit to data (blue dots) using equation 2.12. The data contains 5000 pulses. The
7 parameter fit resulted in a reduced χ2/DOF = 1.08 for 77 DOF. The parameters extracted were the
baseline shift q0 = 0.044±0.031pC, the baseline fluctuation σ0 = 0.169±0.018pC, the dark rate probability
w = 0.30± 0.12, the dark rate exponential parameter c0 = 2.1± 2.1pC−1, the mean gain µ = 2.59± 0.06pC,
the gain fluctuation σ = 0.826 ± 0.057pC and mean number of photo-electrons λ = 2.69 ± 0.10 . Please see
the text for further comments. The figure shows the best fit curve (red) as well as individual components of
the spectrum: the charge spectrum for no photo-electron emission (brown dashed) shows a small dark rate
component as a tail on the positive side; the single photo-electron spectrum (black dashed), a two photo-
electron spectrum (black dotted), and greater than two photo-electrons (blue dashed) are shown separately.

is being calibrated and by using a time window that is imposed externally. In the latter case,
the collected charge will be unbiased and the probability content of the spectrum will be as
described above. If a trigger is imposed on the data, then obviously the collected charge
distribution will be biased. If the trigger threshold is accurate and there is little noise, then
there will be a lower cutoff of the spectrum, but this is rarely the case. A trigger can be
considered a non-linear filter that is imposed on the data, either in hardware or in software.

• It is common for modern data acquisition systems to perform waveform digitization with fast
ADCs. The calibration using the above formula would still work the same as long as the
data was acquired without bias. An important consideration in the acquisition should be the
bandwidth and the corresponding noise level.

• The formula is not limited to very constrained data acquisition conditions such as a fixed time
window of acquisition and fixed light intensity from a pulser. As long as the data acquired
is unbiased, and the conditions are not changing in time, the formula can be used to extract
the mean number of photo-electrons and the mean gain. Such conditions could result from
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a constant rate radioactive decay or cosmic ray muons in a scintillating medium chosen to
provide calibration data during a long data-taking run. The data could be acquired using a
long random time window or triggered using external detectors. We recommend statistics of
at least 5000 pulse acquisitions to provide good accuracy.

• If calibration pulser data cannot be low intensity (λ < 10 photo-electrons) and the gain
fluctuations are large, then we are in a regime where the average number of photo-electrons
and the gain cannot be easily separated from each other. There are strategies that could be
employed by obtaining spectra at several high voltage settings. These strategies rely on the
observation that the gain and the variance of the gain are related to each other through the
amplification at the first dynode. If the voltage drop at the first dynode is fixed (by the use
of a Zener diode, as an example) then the gain fluctuation remains constant, and the ratio of
the standard deviation of the gain and the gain should remain the same (σ/µ) . But if the
voltage at the first dynode is linear with the overall voltage at the cathode, then the ratio of
the gain and standard deviation of the gain will vary as the square-root of the first stage gain.
These relationships could be employed in the fit to constrain the gain parameters with respect
to voltage to separate the average intensity of the photo-electrons.

• With the advent of waveform digitization, the emphasis of simulation is often on simulating
the waveform. We find this unnecessary for most low rate applications (such as neutrino
physics). The expected number of photo-electrons can be simulated using geometric and
optical simulations for each PMT. The distribution function using calibrated constants and
the integral of the formula in equation 2.12 can then be used to directly simulate the measured
charge with the correct model for experimental fluctuations.

• We make a final remark regarding the number of terms that should be retained in equation
2.12 for accuracy in numerical calculations. This obviously depends on λ, the mean number
of photo-electrons. We suggest the sum should be carried out to at least 5 to 10 times λ
depending on the needed accuracy and computing speed.

5 Conclusion

We have provided a new detailed formula for the charge spectrum of a photo-multiplier tube
subjected to low light illumination. The only assumptions in this exercise were that the response
of the PMT is independent for each produced photo-electron, and that the charge is collected
in an unbiased way. We suggest the use of this formula for fitting and calibrating experimental
spectra, and also for accurate fast Monte Carlo generation in complex experimental situations. In
the derivation of this result a number of improvements have been made with respect to existing
literature. A general formalism is provided with broad applicability; it can be used for a variety of
detectors (e.g. silicon photomultipliers) as well as statistical models for signal, background, and
gain. An application for photo-multiplier tubes is thoroughly investigated including an example fit
to data. A new formula using Poisson gain model is provided in the appendix. The new analysis
does not require the assumption of low charge for background processes which affect the spectra.
This analysis also allows precise determination of the probability density at and near zero charge
which can occur due to the sum of fluctuations in charges from backgrounds and signal.
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A Alternate Gain Model

For completeness we provide the full expression (equivalent to equation 2.12), but for an assumption
of gain distributed as if a Poisson distribution. When the first stage gain is sufficiently large the
equation can easily be shown to approach the one for Gaussian gain. In this formulation, many
elementary Gaussian and exponential-modified-Gaussians shifted to the corresponding gain are
seen to combine with appropriate weights to sum up to the total spectrum.

PY (x) = e−λ ×
(
(1 − w)N (x; q0, σ0) + wEN (x; q0, σ0, c0)

)
+

∞∑
n=0

λe−λ
(α)ne−α

n!
×

(
(1 − w)N (x; n + q0, σ0) + wEN (x; n + q0, σ0, c0)

)
+

∞∑
k=2

∞∑
n=0

λke−λ

k!
(kα)ne−kα

n!
×

(
(1 − w)N (x; n + q0, σ0) + wEN (x; n + q0, σ0, c0)

)
(A.1)
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